Evolution and Genetics of Precocious Burrowing Behavior in Peromyscus Mice.

November 23, 2017

Metz HC, Bedford NL, Pan YL, Hoekstra HE

A central challenge in biology is to understand how innate behaviors evolve between closely related species. One way to elucidate how differences arise is to compare the development of behavior in species with distinct adult traits [1]. Here, we report that Peromyscus polionotus is strikingly precocious with regard to burrowing behavior, but not other behaviors, compared to its sister species P. maniculatus. In P. polionotus, burrows were excavated as early as 17 days of age, whereas P. maniculatus did not build burrows until 10 days later. Moreover, the well-known differences in burrow architecture between adults of these species-P. polionotus adults excavate long burrows with an escape tunnel, whereas P. maniculatus dig short, single-tunnel burrows [2-4]-were intact in juvenile burrowers. To test whether this juvenile behavior is influenced by early-life environment, we reciprocally cross-fostered pups of both species. Fostering did not alter the characteristic burrowing behavior of either species, suggesting that these differences are genetic. In backcross hybrids, we show that precocious burrowing and adult tunnel length are genetically correlated and that a P. polionotus allele linked to tunnel length variation in adults is also associated with precocious onset of burrowing in juveniles, suggesting that the same genetic region-either a single gene with pleiotropic effects or linked genes-influences distinct aspects of the same behavior at these two life stages. These results raise the possibility that genetic variants affect behavioral drive (i.e., motivation) to burrow and thereby affect both the developmental timing and adult expression of burrowing behavior.

Curr. Biol.

Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.

November 22, 2017

Schoppik D, Bianco IH, Prober DA, Douglass AD, Robson DN, Li JMB, Greenwood JSF, Soucy E, Engert F, Schier AF

Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior.

SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.

Development and Refinement of Functional Properties of Adult-Born Neurons.

October 17, 2017

Wallace JL, Wienisch M, Murthy VN

New neurons appear only in a few regions of the adult mammalian brain and become integrated into existing circuits. Little is known about the functional development of individual neurons in vivo. We examined the functional life history of adult-born granule cells (abGCs) in the olfactory bulb using multiphoton imaging in awake and anesthetized mice. We found that abGCs can become responsive to odorants soon after they arrive in the olfactory bulb. Tracking identified abGCs over weeks revealed that the robust and broadly tuned responses of most newly arrived abGCs gradually become more selective over a period of ∼3 weeks, but a small fraction achieves broader tuning with maturation. Enriching the olfactory environment of mice prolonged the period over which abGCs were strongly and broadly responsive to odorants. Our data offer direct support for rapid integration of adult-born neurons into existing circuits, followed by experience-dependent refinement of their functional connectivity.


Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.

October 17, 2017

Rubin R, Abbott LF, Sompolinsky H

Neurons and networks in the cerebral cortex must operate reliably despite multiple sources of noise. To evaluate the impact of both input and output noise, we determine the robustness of single-neuron stimulus selective responses, as well as the robustness of attractor states of networks of neurons performing memory tasks. We find that robustness to output noise requires synaptic connections to be in a balanced regime in which excitation and inhibition are strong and largely cancel each other. We evaluate the conditions required for this regime to exist and determine the properties of networks operating within it. A plausible synaptic plasticity rule for learning that balances weight configurations is presented. Our theory predicts an optimal ratio of the number of excitatory and inhibitory synapses for maximizing the encoding capacity of balanced networks for given statistics of afferent activations. Previous work has shown that balanced networks amplify spatiotemporal variability and account for observed asynchronous irregular states. Here we present a distinct type of balanced network that amplifies small changes in the impinging signals and emerges automatically from learning to perform neuronal and network functions robustly.

Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

October 11, 2017

Azevedo AW, Wilson RI

To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.