News

Congratulations to Xiaowei Zhuang: 2019 Breakthrough Prize winner!

October 17, 2018

Mid-level visual features underlie the high-level categorical organization of the ventral stream.

August 31, 2018

Long B, Yu CP, Konkle T

Human object-selective cortex shows a large-scale organization characterized by the high-level properties of both animacy and object size. To what extent are these neural responses explained by primitive perceptual features that distinguish animals from objects and big objects from small objects? To address this question, we used a texture synthesis algorithm to create a class of stimuli-texforms-which preserve some mid-level texture and form information from objects while rendering them unrecognizable. We found that unrecognizable texforms were sufficient to elicit the large-scale organizations of object-selective cortex along the entire ventral pathway. Further, the structure in the neural patterns elicited by texforms was well predicted by curvature features and by intermediate layers of a deep convolutional neural network, supporting the mid-level nature of the representations. These results provide clear evidence that a substantial portion of ventral stream organization can be accounted for by coarse texture and form information without requiring explicit recognition of intact objects.

A method for single-neuron chronic recording from the retina in awake mice.

June 29, 2018

Hong G, Fu TM, Qiao M, Viveros RD, Yang X, Zhou T, Lee JM, Park HG, Sanes JR, Lieber CM

The retina, which processes visual information and sends it to the brain, is an excellent model for studying neural circuitry. It has been probed extensively ex vivo but has been refractory to chronic in vivo electrophysiology. We report a nonsurgical method to achieve chronically stable in vivo recordings from single retinal ganglion cells (RGCs) in awake mice. We developed a noncoaxial intravitreal injection scheme in which injected mesh electronics unrolls inside the eye and conformally coats the highly curved retina without compromising normal eye functions. The method allows 16-channel recordings from multiple types of RGCs with stable responses to visual stimuli for at least 2 weeks, and reveals circadian rhythms in RGC responses over multiple day/night cycles.

Science

The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons

June 8, 2018

Jeanne JM, Fişek M, Wilson RI

Each odorant receptor corresponds to a unique glomerulus in the brain. Projections from different glomeruli then converge in higher brain regions, but we do not understand the logic governing which glomeruli converge and which do not. Here, we use two-photon optogenetics to map glomerular connections onto neurons in the lateral horn, the region of the Drosophila brain that receives the majority of olfactory projections. We identify 39 morphological types of lateral horn neurons (LHNs) and show that different types receive input from different combinations of glomeruli. We find that different LHN types do not have independent inputs; rather, certain combinations of glomeruli converge onto many of the same LHNs and so are over-represented. Notably, many over-represented combinations are composed of glomeruli that prefer chemically dissimilar ligands whose co-occurrence indicates a behaviorally relevant "odor scene." The pattern of glomerulus-LHN connections thus represents a prediction of what ligand combinations will be most salient.

Neuron

A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish

May 1, 2018

Haesemeyer M, Robson DN, Li JM, Schier AF, Engert F

Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output.

Neuron