Structural organization of the actin-spectrin-based membrane skeleton in dendrites and soma of neurons

July 24, 2017

Han B, Zhou R, Xia C, Zhuang X.


Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. In the MPS, short actin filaments, capped by actin-capping proteins, form ring-like structures that wrap around the circumference of neurites, and these rings are periodically spaced along the neurite by spectrin tetramers, forming a quasi-1D lattice structure. This 1D MPS structure was initially observed in axons and exists extensively in axons, spanning nearly the entire axonal shaft of mature neurons. Such 1D MPS was also observed in dendrites, but the extent to which it exists and how it develops in dendrites remain unclear. It is also unclear whether other structural forms of the membrane skeleton are present in neurons. Here, we investigated the spatial organizations of spectrin, actin, and adducin, an actin-capping protein, in the dendrites and soma of cultured hippocampal neurons at different developmental stages, and compared results with those obtained in axons, using superresolution imaging. We observed that the 1D MPS exists in a substantial fraction of dendritic regions in relatively mature neurons, but this structure develops slower and forms with a lower propensity in dendrites than in axons. In addition, we observed that spectrin, actin, and adducin also form a 2D polygonal lattice structure, resembling the expanded erythrocyte membrane skeleton structure, in the somatodendritic compartment. This 2D lattice structure also develops substantially more slowly in the soma and dendrites than the development of the 1D MPS in axons. These results suggest membrane skeleton structures are differentially regulated across different subcompartments of neurons.

A role for the left angular gyrus in episodic simulation and memory

July 21, 2017

Thakral PP, Madore KP, Schacter DL.

Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions, referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in core network regions are critical for episodic simulation and episodic memory. In the current study, we employed MRI-guided transcranial magnetic stimulation (TMS) to assess whether temporary disruption of the left angular gyrus would impair both episodic simulation and memory (16 participants, 10 females). Relative to TMS to a control site (vertex), disruption of the left angular gyrus significantly reduced the number of internal (i.e., episodic) details produced during simulation and memory tasks, with a concomitant increase in external detail production (i.e., semantic, repetitive, or off-topic information), reflected by a significant detail by TMS site interaction. Difficulty in the simulation and memory tasks also increased following TMS to the left angular gyrus relative to the vertex. By contrast, performance in a non-episodic control task did not statistically differ as a function of TMS site (i.e., number of free associates produced or difficulty in performing the free associate task). Taken together, these results are the first to demonstrate that the left angular gyrus is critical for both episodic simulation and episodic memory. SIGNIFICANCE STATEMENT Humans have the ability to imagine future episodes (i.e., episodic simulation) and remember episodes from the past (i.e., episodic memory). A wealth of neuroimaging studies have revealed that these abilities are associated with enhanced activity in a core network of neural regions, including the hippocampus, medial prefrontal cortex, and left angular gyrus. However, neuroimaging data are correlational and do not tell us whether core regions support critical processes for simulation and memory. In the current study, we used transcranial magnetic stimulation (TMS) and demonstrated that temporary disruption of the left angular gyrus leads to impairments in simulation and memory. The present study provides the first causal evidence to indicate that this region is critical for these fundamental abilities.

Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity

July 19, 2017

Braga RM, Buckner RL

Certain organizational features of brain networks present in the individual are lost when central tendencies are examined in the group. Here we investigated the detailed network organization of four individuals each scanned 24 times using MRI. We discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones. A distinction between the networks is that one is coupled to the hippocampal formation while the other is not. Further exploration revealed that these two networks were juxtaposed with additional networks that themselves fractionate group-defined networks. The collective networks display a repeating spatial progression in multiple cortical zones, suggesting that they are embedded within a broad macroscale gradient. Regions contributing to the newly defined networks are spatially variable across individuals and adjacent to distinct networks, raising issues for network estimation in group-averaged data and applied endeavors, including targeted neuromodulation.


A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish

July 12, 2017

Oteiza P, Odstrcil I, Lauder G, Portugues R, Engert F

When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.


Disrupted Prefrontal Regulation of Striatal Subjective Value Signals in Psychopathy

July 5, 2017

Psychopathy is a personality disorder with strong links to criminal behavior. While research on psychopathy has focused largely on socio-affective dysfunction, recent data suggest that aberrant decision making may also play an important role. Yet, the circuit-level mechanisms underlying maladaptive decision making in psychopathy remain unclear. Here, we used a multi-modality functional imaging approach to identify these mechanisms in a population of adult male incarcerated offenders. Psychopathy was associated with stronger subjective value-related activity within the nucleus accumbens (NAcc) during inter-temporal choice and with weaker intrinsic functional connectivity between NAcc and ventromedial prefrontal cortex (vmPFC). NAcc-vmPFC connectivity strength was negatively correlated with NAcc subjective value-related activity; however, this putative regulatory pattern was abolished as psychopathy severity increased. Finally, weaker cortico-striatal regulation predicted more frequent criminal convictions. These data suggest that cortico-striatal circuit dysregulation drives maladaptive decision making in psychopathy, supporting the notion that reward system dysfunction comprises an important neurobiological risk factor.