The rational use of causal inference to guide reinforcement learning strengthens with age

Published Date: 
October 27, 2020

Beliefs about the controllability of positive or negative events in the environment can shape learning throughout the lifespan. Previous research has shown that adults' learning is modulated by beliefs about the causal structure of the environment such that they update their value estimates to a lesser extent when the outcomes can be attributed to hidden causes. This study examined whether external causes similarly influenced outcome attributions and learning across development. Ninety participants, ages 7 to 25 years, completed a reinforcement learning task in which they chose between two options with fixed reward probabilities. Choices were made in three distinct environments in which different hidden agents occasionally intervened to generate positive, negative, or random outcomes. Participants' beliefs about hidden-agent intervention aligned with the true probabilities of the positive, negative, or random outcome manipulation in each of the three environments. Computational modeling of the learning data revealed that while the choices made by both adults (ages 18-25) and adolescents (ages 13-17) were best fit by Bayesian reinforcement learning models that incorporate beliefs about hidden-agent intervention, those of children (ages 7-12) were best fit by a one learning rate model that updates value estimates based on choice outcomes alone. Together, these results suggest that while children demonstrate explicit awareness of the causal structure of the task environment, they do not implicitly use beliefs about the causal structure of the environment to guide reinforcement learning in the same manner as adolescents and adults.