Long-term stability of behaviorally relevant dynamics in neural circuits


December 9, 2015 - 1:00pm
NW 243
About the Speaker
Ashesh Dhawale (Ölveczky Lab)

Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons during experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics outside of task context. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving animals. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Inter-neuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.